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In a telescoped double-walled nanotube with the inner tube partially extracted from the outer tube, the total
current is forced to flow between the layers. Considering the interlayer Hamiltonian as a perturbation, we can
obtain an analytic formula for the interlayer conductance. The accuracy of the perturbation formula is system-
atically improved by including higher order terms. The interlayer interaction effective in the perturbation
formula is the product of the interlayer Hamiltonian and the wave function. It clarifies the effects of the spatial
range of the interlayer Hamiltonian and the band energy shift.
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I. INTRODUCTION

Electronic and mechanical properties of single-walled
nanotubes �SWNTs� originate from the � and � bonds in
their honeycomb lattice.1–3 Although the interlayer bonds are
considerably weaker than the intralayer � and � bonds, they
are important for the formation of double-walled nanotubes
�DWNT�, multiwalled nanotubes, and nanotube bundles. The
telescoped double-walled nanotube �TDWNT� shown in Fig.
1 was formed from a DWNT by partially extracting the inner
tube. Since the rigid honeycomb lattice is relatively unaf-
fected by the weak interlayer bonds, the basic motions of the
TDWNT are limited to the interlayer motions caused by rela-
tive slide and rotation between the outer and inner SWNTs.
Attaching a piezoelectric electrode to each edge, where only
a single monolayer exists, we can measure the relation be-
tween the interlayer motions and the total current forced to
flow between the layers. The interlayer motion and the inter-
layer force were investigated theoretically using molecular
dynamics4–8 and experimentally by atomic force microscopy
and transmission electron microscopy.9–11 The interlayer con-
ductances were also measured experimentally.12,13 The rela-
tionship between the interlayer conductance and the inter-
layer motion can be used to construct nanoelectromechanical
systems �NEMS�, such as nanomechanical switches14 and
nanodisplacement sensors.

The interlayer bond between atoms � and � is represented
by the interlayer Hamiltonian element H�,�. The interlayer

motion influences the conductance through the change of
these elements. Considering the interlayer Hamiltonian as a
perturbation, we can show that the effective interlayer inter-
action is the product of the interlayer Hamiltonian and the
wave function. Though this effective interlayer interaction15

was discussed in Ref. 16, its relation to the conductance was
complicated. In the present paper, the perturbation formula
simplifies this relation. The perturbation formula was not dis-
cussed in most of the preceding theoretical works about the
conductances of TDWNTs.16–23 In Refs. 24 and 25, the per-
turbation formula was discussed but limited to the incom-
mensurate interlayer configuration. The present paper shows
that the perturbation formula is effective even for commen-
surate TDWNTs, e.g., the �5,5�-�10,10� TDWNT, despite
their larger interlayer interaction. In order to confirm the va-
lidity of the perturbation theory, the effect of higher order
terms, that was not discussed in Refs. 24 and 25, is also
examined.

Approximate analytical formulas in Refs. 18 and 23 in-
clude fitting parameters other than the Hamiltonian. Though
the fitting parameters are useful for precise reproduction of
the exact results, they produce ambiguity about the relation
between the conductance and the Hamiltonian. In the present
paper, the perturbation formula is discussed for the interpre-
tation of the relation between the Hamiltonian and the con-
ductance. Thus the fitting parameters are excluded. Since
there is no fitting parameter, agreement between the pertur-
bation formula and the exact results is limited. Nevertheless
the perturbation formula is effective in the interpretation
when it reproduces qualitatively the relation between the
Hamiltonian and the conductance.

The paper is organized as follows. The tight-binding �TB�
model used in the present paper is described in Sec. II. The
perturbation formulas are derived in Sec. III. The results of
Ref. 16 are reproduced by the perturbation formulas in Sec.
IV A. Corrections of the TB Hamiltonian suggested by Refs.
20 and 21 are analyzed in Secs. IV B and IV C. Summary
and discussion are shown in Sec. V.

II. TIGHT-BINDING MODEL

We considered the TDWNT composed of two armchair
tubes, �nO ,nO� and �nI ,nI�. The symbols O and I indicate the
outer and inner tubes, respectively. As the interlayer distance
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FIG. 1. TDWNT.

PHYSICAL REVIEW B 82, 035415 �2010�

1098-0121/2010/82�3�/035415�10� ©2010 The American Physical Society035415-1

http://dx.doi.org/10.1103/PhysRevB.82.035415


must be close to that of graphite, only the case of nO=nI
+5 was considered. Henceforth, the symbol � indicates ei-
ther O or I. The cylindrical coordinates �r ,� ,z� of the atoms
in the tube � are

�r,�,z� = �R�,
��l,j

6n�

+ 	�,I
�,
a

2
j + 	�,O
z� �1�

with integers l , j, �l,j �6l−5− �−1�l+j, the lattice constant a
��3�0.142 nm, and R�=�3an� / �2��. Regarding the
range of j, j�1 for tube O and j2L for tube I, where L is
the number of unit cells in the overlap region. As shown in
Fig. 1, the overlap length equals �L−0.5�a−
z. Figure 2
shows the relationship between the integers �l , j� and the
co-ordinates �� ,z�. The geometric structure and the definition
of �
� ,
z� are the same as in Ref. 16, where �
���� /nO
and �
z��a /4.

The � orbital at position �1� is denoted by �� , l , j� and is
assumed to be orthonormal, i.e., 	�� , l� , j� �� , l , j�
=	�,��	l,l�	 j,j�, where “bra” and “ket” are used to simplify
the notation. The Hamiltonian H of the TDWNT is decom-
posed as H=HI

�0�+HO
�0�+V, where H�

�0� and V correspond to
the intralayer and interlayer Hamiltonian elements, respec-
tively. The interlayer element between atom �= �O , l , j� and
atom �= �I , l� , j�� is represented by

	��V��� = 
�W + 
W�e�d−r�/Lc cos ��,� ¯r � rc

0 ¯r � rc
� �2�

with ��,�=��−��, interatomic distance r, constants W
=0.36 eV, d=0.334 nm, Lc=0.045 nm, and cut-off radius
rc. The interlayer bonds were classified as “AA,” “BB,” or
“AB” bonds. When either � or � had an interlayer bond
shorter than r0 with the third atom ���� ,�� and r�r0, the
bond between � and � was classified as an AB bond.16,26,27

Here, r0= �a /�3���0.36�2+ �15 /2��2=0.34283 nm,28 
W=
−0.20 eV for AB bonds, and 
W=0 for AA and BB bonds.
The covalent bond character is the origin of the negative
value of 
W, the small cut-off radius rc, and the dependence
on �. The intralayer elements were −t=−2.75 eV between
nearest neighbors, � for the diagonal terms of HO

�0�, and zero

otherwise. Even when no interlayer interaction exists, the
linear dispersion lines of tube O shift from those of tube I
due to the difference in curvature causing �-� mixing. In the
following discussions, this shift is called “intrinsic” and is
distinct from the shift induced by interlayer
interaction.21,29,30 The parameter � was introduced to repre-
sent this intrinsic shift.

The energy E�,k
��� and the wave function ��� ,� ,k� of an iso-

lated SWNT were obtained from H�
�0���� ,� ,k�=E�,k

������ ,� ,k�
as

E�,k
��� = − 2t cos�ka/2� − t� + �	�,O, �3�

��,�,k =
1
�2

�
j

exp�ikaj/2�	��,�, j�� �4�

and

	��,�, j�� =
1

�2n�
�
l=1

2n�

�l��,l, j� �5�

with the wave number k and the mirror symmetry �= �1.
When �=0 and rc= �a /�3���1.37�2+ �15 /2��2

=0.39085 nm,28 the total Hamiltonian H=HI
�0�+HO

�0�+V be-
comes equivalent to that of Ref. 16. The reflection at the
open edges �j=1,2L� was neglected here but will be consid-
ered in Sec. III B. The ket	�� ,� , j�� defined by Eq. �5� will be
used in Sec. III B.

III. DERIVATION OF THE PERTURBATION FORMULA

A. Fermi’s golden rule

Since the interlayer Hamiltonian element in Eq. �2� is
much smaller than the intralayer � bonding t=2.75 eV, it
can be considered as a perturbation. According to Fermi’s
golden rule �FGR�, the probability of a transition caused by
the perturbation V per unit time is

P�O,�,k�I,��,k�� =
4�2

h
���O,�,k�V��I,��,k���2

�	�E�,k
�O� − E��,k�

�I� � . �6�

The density of states with positive group velocity was de-
rived from Eq. �3� as

D�
����E���� =

a

2�
� d

dk
E�,k

����−1

= ���4t2 − �E��� + �t − �	�,O�2�−1 �7�

per unit cell of tube �. Note that the wave function in Eq. �4�
was also normalized per unit cell.

When the Fermi level EF is close to zero, the interlayer
current I can be estimated to be

I � 2e �
�,��

� dE�O�� dE�I��fO − f I�D�
�O�D��

�I�

� P�O,�,k�I,��,k�� ,
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FIG. 2. Relationship between integer indexes �l , j� and coordi-
nates �� ,z�. Triangles and circles correspond to odd l and even l,
respectively.
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�G0Vb �
�,��

F�,�����O,�,k�
�O��V��I,��,k��

�I���2, �8�

where

F�,�� � 4�2d�
�O�d��

�I� �9�

G0�2e2 /h, d�
����D�

����EF�, and Vb denotes the bias voltage.
The Fermi wave number k�

��� satisfies EF=−2t cos�k�
�O�a /2�

− t�+�, EF=−2t cos�k��
�I�a /2�− t��, and the positive group

velocity, sin�k�
���a /2��0. As both the bias voltage Vb and the

temperature were close to zero, the Fermi-Dirac distribution
function difference fO− f I was replaced by eVb	�EF−E�O�� in
Eq. �8�.

According to Landauer’s formula, on the other hand, the
conductance G= I /Vb is determined by

G = G0 �
�=�

�
��=�

T�,��, �10�

where T�,�� denotes the interlayer transmission rate from
��I ,�� ,k�� to ��O ,� ,k�. By comparing Eq. �8� to Eq. �10�, an
approximate formula for the transmission rate can be ob-
tained as follows:

T�,�� =
4

3t2 ���O,�,k�
�O��V��I,��,k��

�I���2. �11�

Here we concentrate our discussion into cases where �EF� and
��� are much less than t, i.e.,

k�
�O� � k�

�I� �
�

a
�1 + �

1

3
� , �12�

�d�
�O� � �d��

�I� �
1

�3t
�13�

and F�,���4 / �3t2�.
Using Eqs. �4�, �5�, and �11�

T�,�� =
1

3t2 �A�,��
�cor� + A�,��B�,���

2 �14�

where

A�,��
�cor� � � V̄3,2

�,��

��
�O� − V̄2,3

�,�����
�I��� ���

�I�

��
�O��2L

, �15�

A�,�� � �
j=1

2

�
s=−1

1

V̄j,j+s
�,������

�I�� j+s���
�O��−j , �16�

B�,�� � �
m=0

L−1 � ���
�I�

��
�O��2m

, �17�

��
��� � exp�ik�

���a/2� , �18�

and

V̄j,j�
�,�� � 		O,�, j�V�I,��, j���

= �
l=1

2nO

�
l�=1

2nI �l����l�

2�nInO

	O,l, j�V�I,l�, j�� . �19�

When j0 or j��2L+1, Eq. �19� equals zero. Otherwise
Eq. �19� is determined by j− j� and the parity of j. The cut-
off distance rc in Eq. �2� is so short that Eq. �19� becomes
zero when �j− j���1. In Eq. �14�,��O ,k�

�O� ,��V��I ,k��
�I� ,��� is

resolved into the z-axis factor B�,�� and �-axis factor A�,��
with the boundary correction A�,��

�cor� at z= �L−0.5�a. The cor-
rection A�,��

�cor�, however, is comparable to the �-factor A�,��,
while the z-factor B�,�� can become much larger than unity.
Thus we can neglect A�,��

�cor� in Eq. �14� as

T�,�� =
1

3t2 �A�,���
2�B�,���

2. �20�

Because B�,−��B�,�, T+,−, and T−,+ are negligible compared
to T+,+ and T−,−. Thus the following discussion will concen-
trate on the dominant transmission rates, T+,+ and T−,−. Since
k�O�a−k�I�a�2� / ��3t�

T�,� �
�A�,��2

�2 sin2� �L
�3t

� . �21�

When ���L��3t, Eq. �21� is approximated by

T�,� �
�A�,��2

3t2 L2. �22�

B. Green’s function

With the base set	�� ,� , j�� defined by Eq. �5�, tubes O and
I can be approximated by chains. The nonzero intrachain
elements are 		� , j�H�

�0��� , j�1��=−t and 		� , j�H�
�0��� , j��

=�	�,O−�t. Here we suppress index � to simplify the nota-
tion. As shown in Fig. 3, hc was introduced to cut away the
artificial chains and form the open edges. The nonzero ele-
ments are 		I ,2L+1�hc�I ,2L��= 		I ,2L�hc�I ,2L+1��= t and
		O ,0�hc�O ,1��= 		O ,1�hc�O ,0��= t. The interchain element

V̄j,j�
�,� was defined by Eq. �19�. The retarded Green’s functions

were defined with positive infinitesimal � as g̃= �E+ i�

−H�0��−1, g= �E+ i�−H�0�−hc�−1, G̃= �E+ i�−H�0�−V�−1, and
G= �E+ i�−H�0�−hc−V�−1, where H�0�=HI

�0�+HO
�0�. The in-

terchain elements of g̃ and g are zero while the intrachain

h
c

chain O

chain I

0 1 2 3 4−1−2 5 6

j =

j ' =

artificial chain I

artificial chain O

(L=2)

Vj, j +1

Vj, j −1

Vj, j
−t

0 1 2 3 4−1−2 5 6

h
c

FIG. 3. Schema of the reduced Hamiltonian when L=2.
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elements 		� ,m�g̃�� ,n�� and 		� ,m�g�� ,n�� are denoted by
�g̃��m,n and �g��m,n, respectively.

As was shown in Ref. 31

�g̃��m,n =
− i
�3t

�������m−n�, �23�

where Eq. �13� was used. Using Dyson’s equation g= g̃
+ g̃hcg, we can derive

�gO�m,n = �g̃O�m,n + �g̃O�m,0t�gO�1,n. �24�

Substituting m=1 in Eq. �24�

�gO�1,n =
�g̃O�1,n

1 − t�g̃O�1,0

�25�

is obtained. Using Eqs. �23�–�25�

�gO�m,n = �g̃O�m,n − �g̃O�m+n,0. �26�

The matrix gI is obtained in the same way as

�gI�m,n = �g̃I�m,n − �g̃I�m+n,4L+2. �27�

Dyson’s equations G̃= g̃+ g̃VG̃= g̃�m�Vg̃�m and G=g+gVG
=g�m�Vg�m indicate

G̃j,j� = �g̃OV̄g̃I�1 − tV̄g̃OV̄g̃I�−1� j,j� �28�

and

Gj,j� = �gOV̄gI�1 − tV̄gOV̄gI�−1� j,j�, �29�

respectively, where G̃j,j��		O , j�G̃�I , j��� and Gj,j�
�		O , j�G�I , j���. Using Fisher-Lee relation31,32 and Eq. �13�,
we can obtain the transmission rate T as

T = 3t2�G̃2L+1,0�2 �30�

including the higher terms and

T = 3t2�G2L+1,0�2 �31�

including both the higher terms and reflection at the open
edges. The explicit relation of Eqs. �30� and �31� to the in-

terchain elements V̄j,j� is summarized in the Appendix. In the
Appendix, we can see that the first order term of Eq. �30�,
3t2��g̃OV̄g̃I�2L+1,0�2, coincides with the FGR formula �14�.

C. Expansion of Eq. (30)

Equation �30� can be expanded as

T = 3t2��
m=0

� �− 1

3t2 �m+1

qm�2

, �32�

where

qm � �− 3t2�m+1�g̃OV̄g̃I�
tV̄g̃OV̄g̃I�m�2L+1,0 = �

jl,jl�,sl,sl�

ei��O+�I�f ,

�33�

f = V̄jm,jm+sm �
l=0

m−1

V̄jl,jl+sl
V̄jl�+sl�,jl�

, �34�

�O =
k�O�

2
a�− j0 + �

l=0

m−1

�jl� + sl� − jl+1�� �35�

and

�I =
k�I�

2
a��jm + sm� + �

l=0

m−1

�jl + sl − jl��� . �36�

As the ranges of indexes of Eq. �33� are 1 jl2L, 1 jl�
2L, −1sl1, and −1sl�1,33 the number of terms in
Eq. �33� is 32m+1�2L�2m+1. First we consider the case of �
=0, i.e., k�O�=k�I�. Among the 32m+1�2L�2m+1 terms, those sat-
isfying the condition

j0 � j0� � j1 � j1� � ¯ � jm−1� � jm �37�

are dominant because �O+�I=sm+�l=0
m−1�sl+sl�� irrespective

of indexes �jl , jl� in these dominant terms. The other terms
cancel each other because of their random phases �O+�I.
Since the number of the dominant terms is
32m+1�2L�2m+1 / �2m+1�!, Eq. �33� can be approximated by

qm =
L2m+1

�2m + 1�!
A�A�2m, �38�

where A was defined by Eq. �16�. From Eqs. �32� and �38�,
we can obtain

T = sin2� �A�L
�3t

� . �39�

In order to discuss the case where k�O��k�I�, we refer to the
dispersion relation of the DWNT. The DWNT can be ap-
proximated by the double chain of which the interchain
Hamiltonian element Vj,j�

� is related to Eq. �19� as Vj,j�
�

��V̄1,1+j�−j + V̄2,2+j�−j� /2. The dispersion relation of the
double chain is obtained as15,34

E�,k
��� = E�,k

�I� +
1

2
�� � ��2 + �Ã��2� , �40�

where

Ã� � �
j=1

2

�
s=−1

1

V̄j,j+s
�,� exp�ikas/2� . �41�

Figure 4 shows that Eq. �40� coincides well with the exact
dispersion lines. Comparing Eq. �41� with Eq. �16�, we can

see that Ã� and A�,� are essentially the same. In Eq. �40�, we
can see that the intrinsic band shift � changes the total band
shift E�+�−E�−� from �A� to ��A�2+�2. Assuming the same
effect of � on Eq. �38�, we can obtain

qm =
L2m+1

�2m + 1�!
A��A�2 + �2�m. �42�

From Eqs. �32� and �42�, we can also obtain
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T =
�A�2

�A�2 + �2sin2�L��A�2 + �2

�3t
� . �43�

When L��A�2+�2��3t or �A�� ���, Eq. �43� coincides with
Eq. �21�.

IV. ANALYSIS WITH THE PERTURBATION FORMULA

In the following sections, the transmission rates at EF
=0.1 eV�0.0364t are calculated from the conditioned
transfer matrix �CTM� �Refs. 16 and 35� and the perturbation
formulas �20�, �30�, and �31� with the common TB Hamil-
tonian. In the CTM, the transmission rates were obtained
from the S �scattering� matrix and the numerical errors were
estimated to be �i,k��� jSj,i

� Sj,k�−	i,k�, as the exact S matrix
must be unitary. The estimated errors of the CTM in this
paper were less than 4�10−6. Though the perturbation re-
sults were less accurate than the CTM results, they are useful
in analyzing the CTM results.

A. Original TB model (ε=0, rc=0.39085 nm)

Figures 5 and 6 represent T+,+ and T−,−, respectively, as a
function of integer L. The overlap length �L−0.5�a−
z was
changed discretely and 
z was fixed. The black solid lines,
dotted lines, closed diamonds, and open circles show Eqs.
�20�, �30�, and �31�, and CTM, respectively. In contrast to the
monotonic increase in FGR formula �20� with L, CTM and
Eq. �31� showed a rapid oscillation with a period close to 3a
superimposed on a slower oscillation. Only a slower oscilla-
tion appeared in Eq. �30� because Eq. �30� does not include
the reflection at the open edge. To show the slower oscilla-
tion, the closed diamonds were connected with the dashed
lines at intervals of 3a and the averaged CTM data defined as
TL

�ave�= �TL−1+TL+TL+1� /3 were shown by the red �dark gray
in print� solid lines.

The effects of the structure parameters �L ,nO ,
z ,
��
were reproduced qualitatively by the first order formula �20�
when Eq. �20� is less than unity, i.e., when L��3t / �A�. The
values of �A� / t are shown in figure captions. Even when L
��3t / �A�, Eqs. �30� and �31�, which include higher order
terms, were effective, indicating the validity of the perturba-

tion formula. Note the scale of the vertical axis in Fig. 6. The
transmission rate T−,− of the TDWNTs becomes larger par-
ticularly when nO=nI+5=10.16

B. Modification of rc

When nO=nI+5=10, the maximum conductance of the
TDWNT is 2G0 in the TB calculation, but only G0 in the
local density approximation �LDA�.16,18–21 The difference in
the interlayer Hamiltonian between TB and LDA is the most
probable origin of this disagreement. To evaluate the order of
the interlayer Hamiltonian elements in the LDA calculation,
the Amsterdam Density Functional software �ADF�
calculation36–38 with single zeta 1s, 2s, and 2p orbitals was
performed for a �10,10�-�5,5� DWNT composed of four unit
cells. The structure is represented by Eq. �1�, 1 j8, 
�
=0, and 
z=0.025a. Dangling bonds at j=1,8 were termi-
nated by hydrogen atoms with a bond length of 0.11 nm. In
the �R�� ,z� plane, the C-C-H angle is 2� /3 as is the C-C-C
angle. Geometric optimization was omitted since a slight
change in the structure is not relevant to the order of the
interlayer elements. With the � orbital �� defined as ��
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FIG. 5. �Color online� Interlayer transmission rates T+,+ between
the + channels of �nO ,nI�i�− iz TDWNTs at EF=0.1 eV, where

�=2�i� / �13nO� and 
z=aiz /40. The black solid lines, dotted
lines, closed diamonds, open circles, and red �dark gray in print�
solid lines show Eqs. �20�, �30�, and �31�, CTM and averaged CTM,
respectively. The closed diamonds are connected with the dashed
lines at intervals of 3a. The values of �A+,+� / t are 0.1492, 0.1435,
and 0.1355 in �a�, �b�, and �c�, respectively.
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�cos ��2px+sin ��2py, Fig. 7 shows the interlayer ADF
Fock matrix elements of the � orbitals as a function of
atomic distance. The TB elements used in Ref. 16 are also
shown in Fig. 7 for comparison. The intralayer elements be-
tween nearest neighbors were −4.73�−4.49 eV in the ADF
and −t=−2.75 eV in the TB. Thus, Fig. 7 shows that the
interlayer elements normalized by the nearest neighbor ele-

ments were larger in the ADF than in the TB model. When
we adjust the TB model to reproduce the LDA results, the
adjusted TB model needs to have contradictory features;
larger interlayer elements and smaller interlayer transmis-
sion rates compared to the original TB. To resolve the con-
tradiction, we should notice that the ADF result showed no
clear cutoff radius rc in Fig. 7. Inspired by these results, we
discuss the effect of rc in this section.

Figure 8 shows T−,− for rc=0.385, 0.39085, and 0.4 nm.
We can see that T−,− increases as rc decreases in the averaged
CTM results �dotted lines�. As this relation between rc and
T−,− was reproduced by the perturbation formulas �solid lines
and dashed lines�, it can be explained by the effective inter-
layer interaction A−,− as follows. Interlayer bonds are drawn
between atoms �O , l ,1� and �I , l� ,2� in Fig. 9 when the cor-
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FIG. 6. �Color online� The same calculations as in Fig. 5, except
the transmissions T−,− are between the − channels. In �c�, Eqs. �20�
and �30� nearly coincide with each other. In the insets with the
range 50L120, the data of Eq. �31� are omitted because they
make the insets busy. The values of �A−,−� / t are 0.0167, 0.0262, and
0.0036 in �a�, �b�, and �c�, respectively.
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FIG. 8. �Color online� Interlayer transmission rate T−,− of the
TDWNT �nO=nI+5=10, 
�=4� /130, 
z=0� calculated at EF

=0.1 eV using Eq. �20� �solid lines�, Eq. �30� �dashed lines�, and
the averaged CTM �dotted lines� for the shortened cut-off radius
rc=0.385 nm, the original one rc=0.39085 nm, and the lengthened
one rc=0.4 nm. The values of �A−,−� / t are 0.0271, 0.0160, and
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FIG. 9. �Color online� Horizontal positions of triangles and
circles indicate � coordinates of atoms �O , l ,1� and �I , l� ,2�. nO

=nI+5=10, 
�=4� /130, and 
z=0 in �a� and �b�. nO=nI+5=20,

�=−� /60, and 
z=0 in �c�. The interlayer bonds were drawn
when the interatomic distance was smaller than rc so that the cor-
responding Hamiltonian elements shown by Eq. �2� were finite. The
cut-off radius rc was 0.39085 nm in �a� and �c�, and 0.4 nm in �b�.
The interlayer bond between atoms � and � was formed only when
���−�����c�2 arcsin���4�2rc

2−X� / �12nInOa2��. Here X��75
+�2�j�− j�2�a2, j�− j=2−1=1, and �c is shown by bars.

RYO TAMURA PHYSICAL REVIEW B 82, 035415 �2010�

035415-6



responding Hamiltonian elements 	O , l ,1�V�I , l� ,2� are finite,
or when the atomic distances are smaller than rc. The inter-
layer bonds with even or odd l+ l� are called even or odd
bonds in the following discussion, and represented by solid
or dashed lines, respectively, in Fig. 9, where the parity of l
and l� is distinguished by triangles and circles, using the
same representation of parity as in Fig. 2.

The parameters �nO ,
� ,
z� were chosen to be the same
in Figs. 9�a� and 9�b� as in Fig. 8. Since T−,− in Eq. �20� is
reduced by different parities of l+ l� in Eq. �19�, the reduc-
tion in T−,− is determined by the balance between odd and
even bonds. This balance tends to be lost when the number
of interlayer bonds per unit cell is small, as is illustrated by
Fig. 9�a�; the even bonds are considerably longer than the
odd bonds, although they are equal in number. On the con-
trary, this imbalance is redressed in Fig. 9�b� by increase in
the number of interlayer bonds caused by increasing rc. In
cases where nO�10, on the other hand, the number of inter-
layer bonds is large enough to reduce T−,− without increasing
rc. This is illustrated in Fig. 9�c�, where nO=nI+5=20, 
�
=−� /60, and 
z=0. Figure 10 shows �A−,−�rc=0.4 nm��2
− �A−,−�rc=0.39085 nm��2 for the �10,10�-�5,5� TDWNTs of
which the interlayer configurations are 
�= i�� /65 �i�

=0,1 ,2 , . . . ,12� and 
z= iza /40 �iz=0,1 ,2 ,3 ,4�. Figure 10
clearly indicates that increase of rc tends to reduce �A−,−�2 and
T−,−.

C. Modification of ε

Figure 6 of Ref. 21 indicates a close correlation between
the intrinsic band shift ��� and the suppression of the trans-
mission rate T−,−. These appeared in multiband TB39–41 and
LDA, but not in single band TB. Here we should distinguish
��� from the total shift ��A�2+�2 shown by Eq. �40�. Inspired
by these results, we investigate the effects of ��� in this sec-
tion.

Figures 11 and 12 show the same calculations as Figs.
5�b� and 6�b�, respectively, except that the intrinsic band
shift � was changed from zero to �a� 0.1 eV �b� 0.3 eV, or �c�
0.5 eV. The decrease in the CTM transmission rate with in-

creasing � was reproduced qualitatively by Eq. �20�. We can
also see that precision of the perturbation formula was sys-
tematically improved by Eqs. �30� and �31�.

Equation �30� almost coincides with Eq. �43� as is seen in
Fig. 13. Thus Eq. �43� indicates that the first peak of Eq. �30�
as a function of L appears at

�L,T� = � t�3�

2��A�2 + �2
,

�A�2

�A�2 + �2� . �44�

The first peak position of the averaged CTM is denoted by
�Lctm,Tctm� and compared to Eq. �44� in Table I for Figs.
5�b�, 6�b�, 11, and 12. The peak height of Eq. �44� is lower
than Tctm when ��� / �A� is large. Nevertheless Eq. �44� quali-
tatively reproduces the dependence of �Lctm,Tctm� on �.
When ���� t, the intrinsic shift � exercises only slight influ-
ence over �A�.

V. SUMMARY AND DISCUSSION

Considering the interlayer Hamiltonian as a perturbation,
we derived the first-order formula �20�, the formula includ-
ing the higher order terms in Eq. �30�, the formula including
both the higher order terms and reflection at the open edges
in Eq. �31�. Expanding Eq. �30�, we can see that Eq. �30� is
the essentially the same as Eq. �43�. They were applied to
TDWNTs composed of �nO ,nO� and �nO−5,nO−5� armchair
tubes.

The perturbation formulas clarified the effects of the in-
terlayer Hamiltonian on the interlayer conductance G. The
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FIG. 10. Changes of �A−,−�2 of the �10,10�-�5,5� TDWNTs
caused by increase in rc from 0.39085 to 0.4 nm. The interlayer
configurations are 
�= i�� /65 �i�=0,1 ,2 , ¯ ,12� and 
z= iza /40
�iz=0,1 ,2 ,3 ,4�.
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FIG. 11. �Color online� The same calculations as in Fig. 5�b�,
except the intrinsic band shift � was �a� 0.1 eV, �b� 0.3 eV, or �c� 0.5
eV. The values of �A+,+� / t are shown in Table I.
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product of the interlayer Hamiltonian and the wave function
can be considered as the effective interlayer interaction be-
cause it determines the perturbation formulas �20� and �43�
and the dispersion relation in Eq. �40�. The effective inter-
layer interaction per unit cell and that per total overlapped

region were denoted by A�,�� and A�,��B�,��, respectively.
Here the parity �=+,− or ��=+,− indicates whether the
wave function of the outer or inner tube, respectively,
changes its sign along the circumference. The first-order
�FGR� formula �20� was proportional to �A�,���

2�B�,���
2. Be-

cause �B�,−�� was negligible compared to �B�,��, we could
neglect the interchannel transmission rates T+,− and T−,+.

The CTM transmission rate had a rapid oscillation super-
imposed on a slower oscillation as a function of L. Although
Eqs. �20� and �30� could not reproduce the rapid oscillation,
they approximated the long-period oscillation. The rapid os-
cillation is reproduced by Eq. �31�, which includes the reflec-
tion at the open edge. The first-order formula �20� exceeds
unity when ���� �A�, while the higher order formula �30�
never exceeds unity and reproduced qualitatively the first
peak of the CTM results. The systematic improvement of the
accuracy indicates the validity of the perturbation formulas.

To represent the range L�Lmax where Eq. �20� repro-
duced the averaged CTM results, we define L1� t�3 / �A� and
L2��t�3 /�4�A�2+4�2; Eq. �22� reaches unity at L=L1 and
the first peak of Eq. �30� appears at L=L2. The upper limit of
the effective range, Lmax, is classified according to ��� / �A� as
follows. �i� When ��� / �A��1, Eq. �20� almost coincided with
Eq. �30� and showed the underestimated peak heights. Nev-
ertheless it reproduced well the period of the oscillation of
the averaged CTM even when L�L2. In this sense, Lmax
�L2. Figures 12�b� and 12�c� correspond to this case. �ii�
Lmax=L2��L1� when ��� / �A� is comparable to unity but larger

than ��2

4 −1��1.2�. Figures 11�c� and 12�a� correspond to

this case. �iii� Lmax=L1��L2�, when ��� / �A����2

4 −1. Figures
5, 6, 8, 11�a�, and 11�b� correspond to this case.

Since the first-principles results suggested the significant
effects of the cut-off radius rc and the intrinsic band shift �
on the conductance, they were analyzed by the effective in-
terlayer interaction A�,�B�,� in Eq. �20�. The band shift ���
reduced the conductance because it lowered �B�. As rc be-
came longer, the number of nonzero terms in Eq. �19� in-
creased. When �=��=−, the nonzero terms introduced by
increasing rc could cancel the terms already present in Eq.
�19�. Thus, a longer rc could reduce �A−,−� and T−,−.

In contrast to rigorous calculations, which involve com-
plicated matrix inversion, the first order perturbation formula
�20� involves a simple linear combination of the interlayer
Hamiltonian elements. This enabled us to clarify the role of
the interlayer Hamiltonian in the transmission rate. In addi-
tion to DWNTs, there are various other systems composed of
two monolayer subsystems; side-to-side contact of two
SWNTs,9,19,25 an SWNT on graphene,42 and bilayer
graphene.43 By sliding one subsystem along the other, a gen-
eralized telescoped system can be obtained in which the in-
terlayer bonds can be considered a perturbation. The pertur-
bation formula is an important tool to analyze the NEMS
formed by these telescoped systems.
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APPENDIX

Equations �30� and �31� are explicitly related to Eq. �19�
in this appendix. Only the case where �=�� is considered
here and thus index � is suppressed in the following formu-

las as in Sec. III B. For example, the symbol V̄j,j�
�,� is abbre-

viated as V̄j,j�.
Equations �30� and �31� can be represented by

3t2�G̃2L+1,0�2 = ��
j�=0

2L

x̃j�Ỹ j�,0�2

�A1�

and

3t2�G2L+1,0�2 = ��
j�=0

2L

xj�Y j�,0�2

�A2�

with the following formulas:

x̃j� � − �3t���O��−2L−1�g̃OV̄g̃I�2L+1,j� = �
j0=1

2L+1

���O��−j0v j0,j�
�I� ,

�A3�

Ỹ = �1 + v�O�v�I��−1, �A4�

v j,j�
�I� � i�V̄g̃I� j,j� = �

s=−1

1
V̄j,j+s

�3t
���I���j+s−j��, �A5�

v j�,j
�O� � i�tV̄g̃O� j�,j = �

s�=−1

1 V̄j�+s�,j�
�3t

���O���j�+s�−j�, �A6�

xj� � − i�3t���O��−2L−1�gOV̄gI�2L+1,j�

= �
j=1

2L+1

2 sin� k�O�a

2
j�Xj,j�

�I� , �A7�

Y = �1 + X�O�X�I��−1, �A8�

Xj,j�
�I� = v j,j�

�I� − v j,4L+2−j�
�I� �A9�

and

Xj�,j
�O� = v j�,j

�O� − v j�,−j
�O� . �A10�

For the inverse matrix calculation in Eqs. �A4� and �A8�, v���

and X��� are considered as �2L+1�� �2L+1� matrices in
which indexes are restricted to 1 j2L+1 and 0 j�
2L. From Eqs. �A3�–�A6�, we can obtain Eqs. �32�–�36�.
Equations �A3� and �A5� show that the first-order term of Eq.

�30�, 3t2��g̃OV̄g̃I�2L+1,0�2= �x̃0�2, coincides with the FGR for-
mula �14�.
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